A Stable Adaptive Numerical Scheme for Hyperbolic Conservation Laws
نویسندگان
چکیده
منابع مشابه
Parallel Adaptive Numerical Schemes for Hyperbolic Systems of Conservation Laws*
We generalize the first author’s adaptive numerical scheme for scalar first order conservation laws to systems of equations. The resulting numerical methods generate highly non-uniform, time-dependent grids, and hence are difficult to execute efficiently on vector computers such as the Cray or Cyber 205. In contrast, we show that these algorithms may be executed in parallel on alternate compute...
متن کاملNumerical Methods for Hyperbolic Conservation Laws
2.1 Examples of conservative schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 The Godunov Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 The Lax-Friedrichs Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 The local Lax-Friedrichs Scheme . . . . . . . ....
متن کاملAdaptive Sparse Grids for Hyperbolic Conservation Laws
We report on numerical experiments using adaptive sparse grid dis-cretization techniques for the numerical solution of scalar hyperbolic conservation laws. Sparse grids are an eecient approximation method for functions. Compared to regular, uniform grids of a mesh parameter h contain h ?d points in d dimensions, sparse grids require only h ?1 jloghj d?1 points due to a truncated , tensor-produc...
متن کاملAdaptive Spectral Viscosity for Hyperbolic Conservation Laws
Spectral approximations to nonlinear hyperbolic conservation laws require dissipative regularization for stability. The dissipative mechanism must on the other hand be small enough, in order to retain the spectral accuracy in regions where the solution is smooth. We introduce a new form of viscous regularization which is activated only in the local neighborhood of shock discontinuities. The bas...
متن کاملA Central Weno-tvd Scheme for Hyperbolic Conservation Laws
The purpose of this paper is to carry out a modification of the finite volume WENO (weighted essentially non-oscillatory) scheme of Titarev and Toro [10]. This modification is done by using the third order TVD flux [10] as building blocks in spatially fifth order WENO schemes, instead of the second order TVD flux proposed by Titarev and Toro. The resulting scheme improves both the original and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 1985
ISSN: 0036-1429,1095-7170
DOI: 10.1137/0722012